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Abstract. Employing the WKB approximation, we derive an analytical expression for the two-
body Coulomb propagator in terms of the asymptotic momentum pas, coordinates r and r′ and
the difference of time τ . The momentum pas is a solution of the stationary phase equation. The
problem of solving it is reduced to seeking the roots of some one-dimensional equation. The WKB
Coulomb propagator is applied to calculate the continuum state of an atomic electron, subject to
a sequence of δ-function impulses. The derived continuum state includes the effects of electron
rescatterings into the continuum that may play an important role in various processes of atomic
fragmentation.

1. Introduction

The time evolution of an atom subject to an external time-dependent field, Wext(r, t), is a
fundamental problem of great importance in many branches of atomic, molecular and optical
physics. The general solution of the time-dependent Schrödinger equation governing such
a system is not known and therefore there is a need for simplifying a complicated system or
process such that the simplified model Hamiltonian allows for an exact, i.e., analytical, solution.
The kicked atom (see, e.g., Dhar et al (1983), Carnegie (1984), Grozdanov and Taylor (1987),
Burgdörfer (1989), Hillermeier et al (1992), Casati et al (1994)) together with its counterpart,
the kicked rotor (see, e.g., Schuster (1988)), represent the two fundamental prototype model
systems for irregular classical dynamics in periodically perturbed Hamiltonian systems. The
time evolution for kicked systems reduces to a sequence of discrete maps between adjacent
kicks. This simplification permits detailed numerical studies of the long-term evolution using
both classical and quantum dynamics, and hence, of the classical–quantum correspondence in
microscopic systems that feature regular and chaotic dynamics.

Using the idea of the kicked atom, we can replace a continuous time-dependent field,
Wext(r, t), by a series of non-periodic kicks of different intensity. This can be done in the
following way. Suppose that Wext can be written in the form Wext(r, t) = −�̇ext(r, t),
where �ext(r, t) = −

∫ t dτ Wext(r, τ ) is a known function of time and electronic coordinates.
Further, divide the time interval (t0, t) into N subintervals (ti−1, ti), i = 1, . . . , N and assume
that �ext(r, t) ≈ �ext(r, ti) on the ith interval (ti−1, ti). Of course, this approximation is valid
only if �ext(r, t) does not change strongly on the interval (ti−1, ti) as a function of time. Then,
we have a simplified model of an atom subject to a sequence of δ-function impulses. The
corresponding Hamiltonian is

H = Hat −
N−1∑
i=0

�ext(r, ti)δ(t − ti) (1)
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where Hat is the atomic Hamiltonian and

�ext(r, ti) = �ext(r, ti+1)−�ext(r, ti) = −
∫ ti+1

ti

dτ Wext(r, τ ).

For the N -kicked atom the time-evolution operator or propagator takes the form

K(N)(t, t0) = K(tN = t, tN−1) . . . K(t1, t0)

K(ti+1, ti) = Kat(ti+1, ti) exp(i�ext(r, ti))
(2)

where Kat(ti+1, ti) = exp(−iHat(ti+1 − ti)) is the atomic propagator that governs the system
between two kicks and exp(· · ·) is a phase factor due to the kick at moment t = ti . The general
expansion (2) for the propagator may be useful in investigating nonlinear atomic dynamics
in various time-dependent electric fields, in particular in studies of various processes taking
place in ion–atom or ion–molecule interactions. Thus, expansions of the form (2) appear in the
asymptotic expressions for continuum and bound states of an electron moving in the combined
field of target and projectile ions (Kunikeev 1998, 1999a, b). Here, the phase function �ext

near the target nucleus may be written as �ext(r, t) = k(t) · r, where k(t) is an effective
momentum of an electron modified by the projectile’s field, and a number of approximate
formulae for continuum and bound states may be derived.

The key element of the propagator (2) is seen to be the atomic propagator Kat. In the
Coulombic case, the well known expression for the energy-dependent, non-relativistic Green
function has been obtained in closed form by Hostler and Pratt (1963) and Hostler (1964)
in coordinate representation, while in momentum representation, an integral expression has
been obtained by Schwinger (1964). Since then, significant progress has been made by many
workers (see, e.g., the books by Rapoport et al (1978) and Zapryagaev et al (1985); for a recent
review, see the paper by Maquet et al (1998) and references therein). Thus, Swianson and
Drake (1991) have presented the energy-dependent Coulomb propagator for the relativistic and
semi-relativistic problems, Hylton (1984) has calculated the radial reduced Dirac–Coulomb–
Green function for all bound states, and Hill and Huxtable (1982) have evaluated radial matrix
elements with the Coulomb–Green function.

Another situation emerges in the case of the time-dependent, non-relativistic Green
function or propagator. It was Blinder (1991) who first obtained an analytic expression for the
time-dependent, non-relativistic Coulomb propagator. Unfortunately, this expression is much
more complicated than its energy-dependent counterpart and its direct use in calculating (2)
(3N -dimensional integration) seems to be an intractable task, especially when a rapidly
oscillating continuum state with an arbitrary initial function and phase function �ext should
be evaluated numerically.

On the other side, there exists a general WKB expression for a propagator in terms of the
classical two-point action function (see, e.g., the books by Maslov and Fedoriuk (1981) and
Gutzwiller (1990)), but its rigorous calculation is not a trivial task, especially when the action
is a multi-valued function. As is known, there is no explicit expression for the Coulombic
action which is convenient to calculate. Here, one encounters a number of serious difficulties
(Kay 1994), one of which is the search problem. For each pair of coordinates r and r′ it
is necessary to identify all classical trajectories that travel between these two points in time
τ . Since trajectories are naturally specified by initial conditions (r′,pi ) and not boundary
conditions (r′, r), this procedure requires a search. Such a search is especially difficult for
chaotic systems and long evolution times τ , since the number of trajectories connecting the
two points becomes large and r becomes a very sensitive function of pi . The other is the
caustics problem. The WKB propagator is not valid at caustics where it becomes infinite.
At such points, the quasiclassical propagator should be replaced by more accurate (and more
complicated) uniform expressions (Levit and Smilansky 1977, Levit et al 1978).
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Therefore, in this paper we concentrate our efforts on deriving the corresponding WKB
expressions for Coulomb propagators which are easy to calculate. Actually, we demonstrate
that the task of searching trajectories can be reduced to seeking the roots of some elementary
algebraic one-dimensional equation. The derived simple expressions are not valid at caustics.

The paper is organized as follows. In the next section, the WKB Coulomb propagator is
developed. We then apply in section 3 the derived WKB formulae to the three-body continuum
state, i.e. using the stationary phase approximation, we calculate expansions (2) as they appear
in the three-body continuum states (Kunikeev 1999a, b). Finally, conclusions of our work are
drawn in section 4. Atomic units are used throughout the paper.

2. The WKB Coulomb propagator

The propagator has the following spectral representation in terms of the complete set of
eigenstates

K(r, r′, τ = t − t ′) =
∑
α

ψα(r)ψ
∗
α(r

′) exp(−iεατ ) (3)

where summing is performed over discrete and continuum states ψα with eigenenergies εα .
The bound-state contributions to the propagator can be easily included by direct calculation,
while the continuum-state contribution requires special attention. In this case, one should
perform an integration over intermediate continuum states

ψ(p, r) =
∑
α=±

ψα(p, r) =
∑
α=±

aα(p, r) exp(ipr + i�α(p, r)) (4)

which represent a superposition of two waves; ψ+ and ψ− behave, respectively, as distorted
plane and spherical waves as r →∞. According to this partition the continuum-state part of
the propagator is

KC(r, r
′, τ ) =

∑
α,β=±

Kαβ(r, r
′, τ ) =

∑
α,β

∫
dp

(2π)3
aα(p, r)aβ(p, r

′) exp(iSαβ(p, r, r
′, τ ))

(5)

where the phase function is

Sαβ(p, r, r
′, τ ) = Sα(p, r, t)− Sβ(p, r

′, t ′)
Sα=±(p, r, t) = −(p2/2)t + pr + �±(p, r).

(6)

In the WKB approximation Sα is the action function that satisfies the classical Hamilton–
Jakobi equation

∂Sα

∂t
+

1

2
(∇rSα)

2 + Vc(r) = 0. (7)

For convenience we consider an electron in the Coulombic potential, Vc(r) = −Z/r , of the
target nucleus of charge Z. The full integral of the Hamilton–Jakobi equation (7) containing
three arbitrary constants, p, components of the asymptotic momentum, has the form (Kunikeev
and Senashenko 1996, Kunikeev 1999a)

Sα(p, r, t) = −p2

2
t + pr + ν

(
wα − 1

wα + 1
+ ln

wα − 1

wα + 1

)
+ ϕα(ν)

wα=±(p, r) = ±(1− 4ν/ς)1/2 ν = −Z/p ζ = pr + pr

ϕ+(ν) = −ν ln |ν| ϕ−(ν) = arg ν − 2 arg#(iν)− ν(2− ln |ν|).
(8)

As is known, the quasiclassical approximation is applicable to a Coulomb field if |ν| � 1
(Landau and Lifshitz 1974). Then, using the asymptotic formula for the gamma function,
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#(z), one obtains that ϕ−(ν) = 2 arg ν − ν ln |ν|, i.e. ϕ+(ν) = ϕ−(ν) (mod 2π). Considering
that the functions (8) enter in the integral (5) as the difference (6), we can disregard the phases
ϕ±(ν) in (8).

The WKB amplitude aα obeys the continuity equation

∇r · (a2
α(p, r)∇rSα(p, r, t)) = 0. (9)

Within the asymptotic WKB approach, the integral (5) can be approximately evaluated by
means of the stationary phase method (Fedoriuk 1987)

KWKB
C (r, r′, τ ) =

∑
α,β

KWKB
αβ (r, r′, τ )

= (−2π i)−3/2
∑
α,β

aαβ(r, r
′, τ ) exp

(
iS̃αβ(r, r

′, τ )− i
π

2
µαβ

)
S̃αβ(r, r

′, τ ) = Sαβ(pαβ(r, r
′, τ ), r, r′, τ )

aαβ(r, r
′, τ ) = aα(pαβ(r, r

′, τ ), r)aβ(pαβ(r, r
′, τ ), r′)

×
∣∣∣∣det

∂2

∂p2
Sαβ(pαβ(r, r

′, τ ), r, r′, τ )
∣∣∣∣
−1/2

(10)

whereµαβ = inerdex ∂2

∂p2 Sαβ(pαβ, r, r
′,τ ) denotes a negative inertia index of the matrix ∂2

∂p2 Sαβ
and p = pαβ is a solution of the stationary phase equation

∇pSα(p, r, t) = ∇pSβ(p, r
′, t ′). (11)

It is assumed that det ∂2

∂p2 Sαβ �= 0. If equation (11) at given signs α and β has several or no
solutions, then the corresponding contribution to (10) will consist of several terms or vanish.
First let us consider solutions of equation (11).

2.1. The stationary phase equation

Substituting explicit expressions (8) for Sα and Sβ in (11), we get

−pt + r +
wα − 1

2
(p̂r + r) +

Z

p2
p̂ ln

wα − 1

wα + 1

= − pt ′ + r′ +
w′β − 1

2
(p̂r ′ + r′) +

Z

p2
p̂ ln

w′β − 1

w′β + 1
(12)

where

wα = wα(p, r) w′β = wβ(p, r
′) p̂ = p/p.

The system of three equations (12) may be rewritten as a one equation derived from the
projection of (12) on the direction of the momentum p

pτ +
1

2
(η − η′) +

1

2
(w′βξ

′ − wαξ) +
Z

p2
ln
w′β − 1

w′β + 1

wα + 1

wα − 1
= 0

ξ = r(1 + cos θ) η = r(1− cos θ) cos θ = p̂ · r̂

ξ ′ = r ′(1 + cos θ ′) η′ = r ′(1− cos θ ′) cos θ ′ = p̂ · r̂′

(13)

and two equations from the transverse directions

(wα + 1)r sin θnϕ = (w′β + 1)r ′ sin θ ′nϕ′ (14)

where nϕ and nϕ′ are unit vectors in the direction of the vectors r−r cos θ p̂ and r′−r ′ cos θ ′p̂,
respectively. From equation (14) it follows that nϕ = ±nϕ′ , i.e. the vectors p = pαβ , r, r′ lie
in one plane. In the attractive potential (Z > 0), we have |wα| > 1 and, as a consequence,
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nϕ = nϕ′ in the case of the (α = +, β = +) and (−,−) equations and nϕ = −nϕ′ in the case
of the (+,−) and (−,+) equations. In the repulsive potential (Z < 0), one obtains |wα| < 1
and nϕ = nϕ′ for all equations. We confine our discussion to the case of attractive potentials
(the repulsive potentials are considered in the same way).

Let us consider four cases. Case 1, the (+,+) equation will be analysed in detail. For the
other three cases, corresponding to different combinations of signs, only the final results will
be written down. Denote by

a = 4Z

r(1 + cos θ)
b = r sin θ

a′ = 4Z

r ′(1 + cos θ ′)
b′ = r ′ sin θ ′

(15)

then the (+,+) equation may be recast as(√
p2 + a + p

)
b =

(√
p2 + a′ + p

)
b′. (16)

Suppose b > b′ and transpose the term pb′ from the right- to left-hand side of the equation,
then squaring (16) one obtains

2b(b − b′)p
√
p2 + a = b′2a′ − b2a − 2b(b − b′)p2.

Again squaring the equation, we get the following expression for:

p2 = (b′2a′ − b2a)2

4bb′(b − b′)(b′a′ − ba)
(17)

under the condition

b′2a′ − b2a − 2b(b − b′)p2 > 0.

From (17) it follows that b′a′ > ba. Substituting (17) into the inequality, we obtain

(b′2a′ − b2a)(b′(b′a′ − ba) + ba(b − b′)) > 0.

Thus, we have that equation (17) is defined under the conditions

b > b′ b′a′ > ba b′2a′ > b2a.

Similarly, we obtain

p2 = (b′2a′ − b2a)2

4bb′(b′ − b)(ba − b′a′)
if b′ > b ba > b′a′ b2a > b′2a′. (18)

Using explicit expressions (15), we get

b − b′ = |r − r′| sin(θ ∓ γ )

b′a′ − ba = ± 4Z sin(δ/2)

cos(θ/2) cos((θ ± δ)/2)
b′2a′ − b2a = 4Z|r − r′|(cosβ + cos(θ ∓ γ ))

(19)

where

cosβ = (r ′ − r)/|r − r′| cos γ = (r − r ′ cos δ)/|r − r′|
and δ is the angle between the radius vectors r and r′. Here, the upper sign corresponds to the
conditions 0 < θ < π − δ, δ < θ ′ < π , θ ′ = θ + δ (� AOB ′, see figure 1) and the lower sign
refers to δ < θ < π , 0 < θ ′ < π − δ, θ ′ = θ − δ (� A′OB). Substituting the formulae (19)
into (17) or (18) (that depends on what sings, upper or lower, are chosen in (19)), one obtains

p2 = ± Z|r − r′|
4rr ′ sin(δ/2)

(cosβ + cos(θ ∓ γ ))2

sin(θ/2) sin((θ ± δ)/2) sin(θ ∓ γ )
(20)
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r' - r

C

C'

A

B

O

A'

B'

Figure 1. Angular sectors to which asymptotic momenta pαβ
(α, β = ±) may belong: p++ and p−− lie in � B ′OC or � A′OC′,
while p+− and p−+ in � AOB or � A′OB ′.

expressed as a function of θ . Further, one can see that the set of inequalities under which
equation (17) is defined is equivalent to

γ < θ < min(γ + α, γ + π − β) =
{
γ + α if cos δ < 2r ′/r − 1

γ + π − β if cos δ > 2r ′/r − 1
(21)

where cosα = (r ′ − r cos δ)/|r − r′|; for inequalities in (18) one obtains

δ + α < θ < min(π, π + β − γ ) =
{
π if cos δ < 2r/r ′ − 1

π + β − γ if cos δ > 2r/r ′ − 1
(22)

i.e. equation (20), with the upper and lower signs, are defined, respectively, in the angular
sectors � B ′OC and � A′OC ′ or in their parts if π − β < α in (21) and β < γ in (22).

In case 2, the (−,−) equation, we obtain the same expression (20) for the quadratic
momentum but the regions (21) and (22), in which it is defined, should be replaced by{

∅ if cos δ < 2r ′/r − 1

γ + π − β < θ < γ + α if cos δ > 2r ′/r − 1
(23)

and {
∅ if cos δ < 2r/r ′ − 1

π + β − γ < θ < π if cos δ > 2r/r ′ − 1
(24)

respectively. Note that the (−,−) equation cannot have solutions if simultaneously cos δ <
2r ′/r − 1 and cos δ < 2r/r ′ − 1. These conditions are fulfilled if, for example, r = r ′.

For cases 3 and 4 corresponding to the (+,−) and (−,+) equations, we get the following
general expression:

p2 = ∓ Z|r − r′|
4rr ′ sin(δ/2)

(cosβ + cos(θ ± γ ))2

sin(θ/2) sin((θ ∓ δ)/2) sin(θ ± γ )
(25)

where the upper and lower signs correspond to � AOB: 0 < θ < δ, θ ′ = δ − θ and � A′OB ′:
π − δ < θ < π , θ ′ = 2π − θ − δ. In � AOB, the (+,−) and (−,+) equations are defined,
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respectively, in regions 0 < θ < δ + α − β and δ + α − β < θ < δ, while in � A′OB ′, the
(+,−) and (−,+) equations are defined in regions


∅ if cos δ > 2r ′/r − 1

α + γ < θ < γ + π − β if cos δ < min(2r ′/r − 1, 2r/r ′ − 1)

α + γ < θ < π if cos δ > 2r/r ′ − 1

(26)

and 

∅ if cos δ > 2r/r ′ − 1

π − β + γ < θ < π if cos δ < min(2r ′/r − 1, 2r/r ′ − 1)

α + γ < θ < π if cos δ > 2r ′/r − 1

(27)

respectively. Thus, we can conclude that all the (α, β) equations for p2(θ) are defined in
different regions.

Substituting equation (20) or (25) into (13), we get a one-dimensional equation, defined
in the given region, which should be solved for θ . Moreover, making use of (14) and the
relationship

(w2
α − 1)ξ = 4Z

p2
= (w′2β − 1)ξ ′ (28)

we can simplify the logarithmic term such that equation (13) takes a simpler form

fαβ(θ) ≡ pτ +
1

2
(η − η′) +

1

2
(w′βξ

′ − wαξ) +
Z

p2
ln
η′

η
= 0. (29)

Let us stress that in passing from the (+,+) to (−,−) equation both the logarithmic terms
in (13) and (29) reverse the sign. In (13), this property is seen straightforwardly, while the
logarithmic term in (29) does not change its sign at first glance. A closer inspection of (29)
shows that the property holds because of the fact that the (+,+) and (−,−) equations are
defined in such different regions that if, for example, η′ > η in one region, then η > η′ in the
other one. In particular, this property explains why the (+,+) and (−,−) equations cannot be
defined in a common region.

In the limitZ→ 0, the Coulomb propagator tends to a free one and the phase equations (12)
to a free counterpart. Since the amplitude a−(p, r) is proportional to Z, only the (+,+) term
survives in (10) as Z→ 0. However, not only the (+,+) equation but also the other ones make
a sense asZ→ 0. As an example, consider the solution of the (+,+) and (+,−) equations (14)
and (29) in the limiting case Z→ 0. From (14) it follows that r sin θ = r ′ sin θ ′ for the (+,+)
equation, i.e., we have the two solutions θ1 = γ , θ ′1 = γ + δ or θ ′2 = α, θ2 = α + δ (see
figure 1). It means that the limiting momentum pZ=0

++ is parallel to the radius vector r′ − r,
i.e., p̂Z=0

++ = ∓(r̂′ − r), where the upper and lower signs correspond to the solutions θ1 and
θ2, respectively. As Z→ 0, equation (29) tends to

f Z=0
++ (θ) ≡ pτ + r ′ cos θ ′ − r cos θ = 0. (30)

Substituting the above values for θ and θ ′ in (30), one obtains p1,2τ = ±|r − r′|, where the
upper and lower signs correspond to the alternative values θ1,2 and θ ′1,2. Further, from the last
equation we have pZ=0

++ = p1 = |r − r′|/τ or pZ=0
++ = p2 = −|r − r′|/τ if τ > 0 or τ < 0,

respectively. Finally, we get that the (+,+) equation has a single solution pZ=0
++ = (r − r′)/τ

for any signs of τ . Actually, this solution follows easily from the original vector equation (12)
in the limit Z→ 0.

For the (+,−) equation, we get from (14) that r sin θ = 0 and θ1 = 0 or θ2 = π , i.e.,
p̂Z=0

+− = ±r̂. Instead of (30), we obtain

f Z=0
+− (θ) ≡ pτ − r ′ − r cos θ = 0. (31)
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Substituting the values θ1,2 = 0, π in (31), we have p1,2 = (r ′ ± r)/τ . Thus, depending on
the choices of r, r ′, and τ , equation (31) may have no solution, one or two solutions. If, for
example, r ′ > r and τ > 0, then one obtains the two solutions: (pZ=0

+− )1,2 = (r ± r ′r̂)/τ .
Unfortunately, the general equation (29) does not allow an analytic solution and therefore

we have to solve it numerically. As an example, we plot fαβ(θ) at r = 1, r ′ = 2, δ = 60◦ and
τ = ±0.25, ±0.5, and ±1.0 in the case of an electron in the field of a proton, Z = 1, as a
function of θ in all the angular sectors (figure 2). One can see that in � COB ′: 90◦ < θ < 120◦,
θ ′ = θ + 60◦ only the (+,+) equation is defined and there is no root at τ = ±1, −0.25, −0.5,
while at τ = 0.5, 0.25 we have a root θc(τ )→ γ = 90◦ as τ → 0, τ > 0. Further, in � A′OC ′:
90◦ < θ < 180◦, θ ′ = θ − 60◦ both the (+,+) and (−,−) equations are defined: the (+,+)
equation is defined in the interval 90◦ < θ < 180◦ − γ + β � 180◦ − 90◦ + 54.74◦ = 144.74◦

(cosβ = √
3/3, β ≈ 54.74◦); the (−,−) equation refers to 144.74◦ < θ < 180◦. At

the boundary angle θb ≈ 144.74◦, the quadratic momentum in (29) vanishes, p2(θb) = 0,
and η(θb) = η′(θb) since p2 ∼ (η − η′)2. The (+,+) equation is seen to have no root at
τ > 0 and there is a root θc(τ ) → 180◦ − γ = 90◦ as τ → 0, τ < 0, while the (−,−)
equation has no solution in the interval θb < θ < 180◦. Besides, it can be easily checked that
fαβ(θ)|p(θ)→0 → 0. Indeed, from (8) we get the following expansion:

w′β − 1

w′β + 1

wα + 1

wα − 1
= 1 +

p√
Z
(α
√
ξ − β

√
ξ ′) +

p2

2Z
(α
√
ξ − β

√
ξ ′)2 + O(p3). (32)

Using (32), we obtain

Z

p2
ln
w′β − 1

w′β + 1

wα + 1

wα − 1
=
√
Z

p
(α
√
ξ − β

√
ξ ′) + O(p). (33)

Similarly,

1

2
(wβξ

′ − wαξ) = −
√
Z

p
(α
√
ξ − β

√
ξ ′) + O(p). (34)

Finally, summing (33) and (34), we get

1

2
(wβξ

′ − wαξ) +
Z

p2
ln
w′β − 1

w′β + 1

wα + 1

wα − 1
= O(p). (35)

This completes the proof. Thus, we have f++(θ)|θ→θb−0 → 0 and f−−(θ)|θ→θb+0 → 0. In
a similar way, we can readily verify that equation (14) is satisfied as p → 0 and hence
∇pSαβ(p, r, r

′, τ )|p=pαβ (θ→θb) = 0.
Furthermore, in � AOB: 0◦ < θ < δ = 60◦, θ ′ = δ − θ , both the (+,−) and (−,+)

functions are defined, respectively, in the intervals 0◦ < θ < θb = δ + α − β ≈ 35.26◦

and θb < θ < 60◦. As above, we see that f+−(θ)|θ→θb−0 → 0 and f−+(θ)|θ→θb+0 → 0.
Besides, one can see that the (+,−) equation has a root θc(τ ) → 0◦ as τ → 0, τ > 0,
while the (−,+) equation has a root θc(τ )→ δ = 60◦ as τ → 0, τ < 0. Finally, in � A′OB ′:
180◦−δ = 120◦ < θ < 180◦, θ ′ = 360◦−θ−δ only the (+,−) function is defined and there is a
root at τ = 1 but no root at τ = ±0.25,±0.5,−1.0. Thus, we have that at the given parameters
the stationary phase equations (12) have two solutions. The contributions from other roots at
boundary angles θ = θb cannot be considered within the standard stationary phase method
because the momentum p(θb) = 0 and we have the amplitude aα(p, r)|θ→θb ∼ p−1/2 → ∞
and the determinant | det ∂2

∂p2 Sαβ |1/2
θ→θb

∼ p−2 → ∞ (see section 2.3). We can, however,
regularize the integral (5) by introducing the phase factor exp(ipε). Then, equation (14) does
not change its form and, therefore, p(θ)|θ→θb → 0, but equation (29) is replaced by

f ε
αβ(θ) ≡ fαβ(θ) + ε = 0.
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Figure 2. The function fαβ(θ) defined by equation (29) in different angular sectors (see figure 1).
The parameters are r = 1, r ′ = 2, δ = 60◦, and τ = ±0.25, ±0.5, ±1.0.

Thus, the regularized function f ε
αβ(θ) is simply the function fαβ(θ) shifted on ε, up or down,

that depends on the sign of ε. The regularized equation has a root θεb |ε→0 → θb so that
p(θεb ) ∼ |ε|. Therefore, from (10) we get

aαβ(r, r
′, τ )|θ=θεb ∼ |ε|

and the boundary points θεb does not contribute to (10) as ε → 0.

2.2. The two-point action function

Now we discuss how the derived stationary phase points are associated with the two-point
action function. Denote by

qα(p, r, t) = ∇pSα(p, r, t) (36)

the map: r → qα; then the stationary phase equation tells us that qα(p, r, t) = qβ(p, r
′, t ′)

at p = pαβ . According to implicit function theorem, this equation is solvable for p and
defines the function pαβ(X) that reduces the equation to an identity in the neighbourhood of

X = (r, t, r′, t ′) under the condition det ∂2Sαβ
∂p2 |pαβ ,X �= 0. We can also reverse the map (36),

namely, express rα = rα(p, q, t) as a function of p, q, t under the condition det ∂2Sα
∂p∂r

�= 0.
By the Jakobi theorem (Arnold 1978), rα(p, q, τ ) represents a set of classical trajectories
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depending on six constants p, q such that rα(p, q, τ = t) = r and rβ(p, q, τ = t ′) = r′

at p = pαβ and q = qα = qβ . In the case α = β, we have, therefore, a single trajectory
rα(pαα, qα, τ ) passing through the points r and r′ at moments τ = t and t ′, respectively;
while at α �= β we obtain the two types of trajectories, the (+) and (−) trajectories: one
trajectory rα(pαβ, qα, τ ) passes through r at τ = t and the other one, rβ(pαβ, qα = qβ, τ ),
passes through r′ at τ = t ′.

Let us consider solving equation (36) for r at greater length. Substituting the explicit
expression (8) for Sα into (36), we can rewrite the system of equations as

q⊥ = wα + 1

2
(r − (p̂r)p̂)

q‖ = −pt +
1

2
(wα − 1)r +

1

2
(wα + 1)(p̂r) +

Z

p2
ln
wα − 1

wα + 1

(37)

where q = q‖p̂ + q⊥ = q‖p̂ + q⊥n⊥. From (37) we get that r − (p̂r)p̂ = ±r sin θn⊥
(cos θ = (p̂r̂), Z > 0) at α = ±, i.e., r = rα=± = rα cos θαp̂ ± rα sin θαn⊥ belongs to the
plane that spans the vectors p and q and the first equation reduces to

q⊥ = 1

2

(√
1 +

4Z

p2rα(1 + cos θα)
± 1

)
rα sin θα at α = ±. (38)

From (38) we can readily obtain rα(θα) as a function of polar angle θα . The explicit expressions
for the hyperbolic trajectories rα(θα) are already written out, equations (28) and (31) in
Kunikeev (1999a), but they were derived there in a different way, namely, by direct integration
of the equations

ṙ(t) = ∇rSα(p, r, t) = p +
wα − 1

2
p(p̂ + r̂). (39)

In passing, note that the right-hand side of (39) does not actually depend on t . Now establish a
relationship between the constants of integrationρ0 and θ0, whereρ0 is an impact parameter and
θ0 is an angle specifying the direction of the hyperbolic trajectory asymptote, in equations (28)
and (31) by Kunikeev (1999a) and the parameter q⊥ in (38). As rα → ∞ in (38), we get
q⊥ = ρ0 at α = + and q⊥p2/Z = sin θ0/(1 + cos θ0) = tan(θ0/2) at α = −. It follows that
the parameters ρ0 and θ0 in the two types of trajectories, with α = ±, defined by (37) are not
independent ones but related by equation

ρ0p
2/Z = tan(θ0/2). (40)

Finally, substituting the function rα(θα) into the second equation of (37), we can solve it for
θα , thus obtaining a function θα(t).

Denote by 33
α(r) = (r,pα(p, r)) the Lagrange manifolds defined at r ∈ R3\(Dα ∪ lcα);

here, Dα is the region where pα(p, r) is not defined and lcα is a set of the caustics points in
which det ∂rα/∂q = 0. From (36) it follows that det ∂rα/∂q = (det ∂2Sα

∂p∂r
)−1. Let us evaluate

the last determinant. From (39) we get

∂2Sα

∂ri∂pj
= wα + 1

2
δij +

wα − 1

2

ri

r

pj

p
− Z

wαp2ξ 2

(
ri

r
+
pi

p

)(
pj

p
(r + ξ) + rj

)
(41)

where indices i, j = 1, 2, 3 label projections of coordinates. Choose the system of coordinates
such that p = (0, 0, p) and r = (r sin θ, 0, r cos θ); then the matrix (41) takes the form(

∂2Sα

∂ri∂pj

)
=



wα+1
4wα

(wα + 1 + (wα − 1) cos θ) 0 −wα−1
2wα

sin θ

0 wα+1
2 0

−w2
α−1

4wα
sin θ 0 1

2wα
(wα + 1− (wα − 1) cos θ)




(42)
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and

det

(
∂2Sα

∂ri∂pj

)
= (wα + 1)2

4wα

(43)

because coefficients of the characteristic polynomial det(A− λE) = 0 are independent of the
choice of basis vectors.

One can see that the caustics points are defined by the conditions: wα = 0,±∞. Recall
that in the cases Z > 0 and Z < 0 we have |wα| > 1 and |wα| < 1, respectively. Hence, we
obtain different sets of the caustics points: for attractive potential, lZ>0

c = {r : ξ = 0}
represents the negative semiaxes (0 � r < ∞, θ = π) and for repulsive potential,
lZ<0
c = {r : ξ = ξc = 4|Z|/p2} is a two-dimensional surface (see figure 1 in Kunikeev

(1999a)). In addition, we have DZ<0
α = {r : ξ < ξc} and DZ>0

α = ∅.
Consider the limiting behaviour of the momentum pα(p, r) as r approaches to lZ>0

c . We
have

pα=±(p, r)|θ→π = p±
√

2Z

r
(nr)⊥ (44)

where r = r cos θ p̂ + r sin θnr⊥ . One can see that (44) is not defined at r ∈ lZ>0
c since the

limit depends on the direction of the vector nr⊥ or the plane in which the vectors r and p̂ lie
when we approach the caustics point. This is because lZ>0

c is the set of points where infinitely
many trajectories with different azimuthal angles are focused.

Note that the above trajectories rα(pαβ, qα, τ ) and rβ(pαβ, qα, τ ) cross in a focusing point.
In fact, the (+) and (−) trajectories with impact parameter ρ0 and angle θ0 intersect lZ>0

c at the
points (rc+ = (pαβρ0)

2/(2Z), θ = π) and (rc− = Z/(2p2
αβ) tan2(θ0/2), θ = π), respectively

(Kunikeev 1999a). By (40), we have rc+ = rc− and, thus, these points coincide with each
other. As follows from the second equation of (37), the trajectories intersect the caustics line
at the one moment of time τ = tc = −(q‖ + rc+)/pαβ . In addition, from (44) we get that the
limiting momenta at the caustics point rc are equal: pα(pαβ, rc) = pβ(pαβ, rc). Therefore,
we can define the single trajectory

rαβ(pαβ, qα, τ ) =
{

rα(pαβ, qα, τ ) at tc � τ � t

rβ(pαβ, qα, τ ) at t ′ � τ � tc
(45)

that smoothly connects the points r and r′. In view of (39), the curve (45) also connects the
corresponding points of the Lagrange manifolds 33

α and 33
β ; transition from 33

β to 33
α occurs

at caustics point rc at moment τ = tc.
By definition, the two-point action function is

S̃αβ(r, t, r
′, t ′) =

∫ t

t ′
p dr −Hat(p, r) dτ =

(∫ tc

t ′
+
∫ t

tc

)
p dr −Hat(p, r) dτ (46)

where integration is performed along the path (45). On the path, the Hamilton function is a
constant: Hat(p, r) = p2

αβ/2. In addition, we have p = ∇rSβ(pαβ, r) and p = ∇rSα(pαβ, r)

on the time intervals (t ′, tc) and (tc, t), respectively. As is known, the integral
∫

p dr defined
on the Lagrange manifolds 3β and 3α does not depend locally on a path, but it is a function
of initial and final points of a path. Using these properties, we get

S̃αβ(r, t, r
′, t ′) = pαβr + �α(pαβ, r)− pαβrc −�α(pαβ, rc)

+pαβrc + �β(pαβ, rc)− pαβr
′ −�β(pαβ, r

′)− (p2
αβ/2)(t − t ′)

= Sα(pαβ, r, t)− Sβ(pαβ, r
′, t ′) = Sαβ(pαβ, r, r

′, τ )|pαβ=pαβ (X) (47)

where we have used the relation: �α(pαβ, rc) = �β(pαβ, rc). An inspection of (10) and (47)
shows that the phase function S̃αβ of the propagator is really the two-point action function (47).
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A similar result is readily obtained in the case α = β, where a path connecting two points does
not intersect the caustics line.

Making use of (13), we can reduce (47) to the form

S̃αβ(r, t, r
′, t ′) = − 3

2p
2(t − t ′) + p(r ′ − r) + p(r − r′) + ζwα(p, r)− ζ ′wβ(p, r

′)|p=pαβ (X)

ζ = pr + pr ζ ′ = pr ′ + pr′. (48)

2.3. Maslov’s determinant and the index µαβ

Now let us prove that the amplitude aαβ(r, r
′, τ ) in (10) is associated with the Maslov

determinant by

aαβ(r, r
′, τ ) =

∣∣∣∣∣det
∂2S̃αβ(r, t, r

′, t ′)
∂r∂r′

∣∣∣∣∣
1/2

. (49)

Doubly differentiating equation (47) with respect to r and r′, we obtain

∂2S̃αβ

∂r∂r′
= ∂p

∂r

∂2Sαβ

∂p2

∂p

∂r′
+
∂2Sα

∂r∂p

∂p

∂r′
− ∂p

∂r

∂2Sβ

∂p∂r′
+
∂Sαβ

∂p

∂2p

∂r∂r′

∣∣∣∣∣
p=pαβ (X)

. (50)

In view of (11), the last term in (50) vanishes. As mentioned above, substitution of the function
pαβ(X) for p reduces (11) to an identity. First, differentiate this identity with respect to r

∂p

∂r

∂2Sαβ

∂p2
+
∂2Sα

∂r∂p

∣∣∣∣
p=pαβ (X)

= 0 (51)

and then, with respect to r′,

∂2Sαβ

∂p2

∂p

∂r′
− ∂2Sβ

∂p∂r′

∣∣∣∣
p=pαβ (X)

= 0. (52)

Using (51) and (52), we reduce (50) to

∂2S̃αβ

∂r∂r′
= −∂p

∂r

∂2Sαβ

∂p2

∂p

∂r′

∣∣∣∣∣
p=pαβ (X)

. (53)

In addition, from (51) and (52) we obtain

∂pαβ

∂r
= − ∂2Sα

∂r∂p

(
∂2Sαβ

∂p2

)−1
∣∣∣∣∣
p=pαβ (X)

∂pαβ

∂r′
=
(
∂2Sαβ

∂p2

)−1
∂2Sβ

∂p∂r′

∣∣∣∣∣
p=pαβ (X)

. (54)

Substituting the derivatives (54) into (53), we get

∂2S̃αβ

∂r∂r′
= ∂2Sα

∂r∂p

(
∂2Sαβ

∂p2

)−1
∂2Sβ

∂p∂r′

∣∣∣∣∣
p=pαβ (X)

. (55)

Finally substituting (55) into the right-hand side of (49), we obtain∣∣∣∣∣det
∂2S̃αβ(r, t, r

′, t ′)
∂r∂r′

∣∣∣∣∣
1/2

=
∣∣∣∣det

∂2Sα

∂r∂p

∣∣∣∣
1/2 ∣∣∣∣det

∂2Sαβ

∂p2

∣∣∣∣
−1/2 ∣∣∣∣det

∂2Sβ

∂p∂r′

∣∣∣∣
1/2

p=pαβ (X)

. (56)

To conclude the proof, it remains to note that the Jakobian det ∂qα/∂r = det ∂2Sα
∂p∂r

satisfies the
continuity equation (9) (lemma 5.1, part II in the book by Maslov (1988)) and therefore we
have

aα(p, r) =
∣∣∣∣det

∂2Sα

∂p∂r

∣∣∣∣
1/2

. (57)
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Thus, from (43) we get simple explicit expressions for the amplitudes (57). These expressions
coincide with the results of direct integration of equation (9) (Kunikeev and Senashenko 1996).
As ξ →∞, the amplitudes (57) have the following asymptotic behaviour: a+(p, r)→ 1 and
a−(p, r|Z|/(pξ).

Equation (49) may by viewed as an abbreviated representation of the amplitude
aαβ(r, r

′, τ ), but equation (56) is its detailed form. In order to evaluate aαβ(r, r′, τ ) it remains

to obtain an explicit expression for det ∂2Sαβ
∂p2 . Again differentiating equation (12) with respect

to p, we get

∂2Sαβ

∂pi∂pj
= −δij τ +

1

2p

(
δij − pipj

p2

)
((wα − 1)r − (w′β − 1)r ′)− Z

p3

(
hihj

wα

− h′ih
′
j

w′β

)

+
Z

p3

(
δij − 3pipj

p2

)
ln
wα − 1

wα + 1

w′β + 1

w′β − 1
(58)

where

hi =
(
pi

p
(2 + cos θ) +

ri

r

)/
(1 + cos θ) h′i =

(
pi

p
(2 + cos θ ′) +

r ′i
r ′

)/
(1 + cos θ ′).

Expressing the logarithmic term from (13) and substituting it in (58), we obtain at the stationary
phase point

∂2Sαβ

∂pi∂pj

∣∣∣∣
p=pαβ (X)

= −3pipj
p2

τ +

(
δij − 3pipj

p2

)
(r ′ cos θ ′ − r cos θ)/p

+
wα − 1

2p
r

(
−δij cos θ +

pipj

p2
(3 cos θ + 2)

)
− w′β − 1

2p
r ′

×
(
−δij cos θ ′ +

pipj

p2
(3 cos θ ′ + 2)

)

+
Z

p3

(
h′ih

′
j

w′β
− hihj

wα

)∣∣∣∣∣
p=pαβ (X)

. (59)

Choose the system of coordinates such that pαβ = (0, 0, pαβ) and r = (r sin θ, 0, r cos θ),
r′ = (±r ′ sin θ ′, 0, r ′ cos θ ′), where the upper sign corresponds to the (+,+) and (−,−)
equations and the lower sign to the (+,−) and (−,+) equations (see section 2.1). In such a
system of coordinates we have(

∂2Sαβ

∂pi∂pj

)
p=pαβ (X)

=
(
a11 0 a13

0 a22 0
a13 0 a33

)
p=pαβ (X)

(60)

where

a11 = 1

2p
((w′β + 1)r ′ cos θ ′ − (wα + 1)r cos θ) +

Z

p3

(
tan2(θ ′/2)

w′β
− tan2(θ/2)

wα

)

a22 = 1

2p
((w′β + 1)r ′ cos θ ′ − (wα + 1)r cos θ)

a33 = −3τ + (wαξ − w′βξ
′ + η′ − η)/p +

4Z

p3

(
1

w′β
− 1

wα

)

a13 = 2Z

p3

(
± tan(θ ′/2)

w′β
− tan(θ/2)

wα

)
(61)
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and

det

(
∂2Sαβ

∂pi∂pj

)
p=pαβ (X)

= a22(a11a33 − a2
13)|p=pαβ (X). (62)

From (60) the following eigenvalues of the matrix can be readily obtained:

λ2 = a22 λ1,3 =
a11 + a33 ±

√
(a11 − a33)2 + 4a2

13

2
. (63)

The negative inertia index µαβ is a number of negative eigenvalues (63). Using (14) and (61),
we can rewrite λ2 in the form

λ2 = ∓ (wα + 1)r

2p

sin δ

sin θ ′
(64)

where the upper sign stands for solutions of the stationary phase equation lying in the angular
sectors � COB ′ and � AOB, while the lower sign is for � AOB and � A′OB ′ (figure 1). The
sign of (64) is easily determined. Further, if the inequality a11a33 < a2

13 fulfils, then λ1 and λ3

have opposite signs. In the case a11a33 > a2
13, there are two possibilities: λ1 > 0, λ3 > 0, if

a11 + a33 > 0 and λ1 < 0, λ3 < 0, if a11 + a33 < 0.
Thus, the WKB Coulomb propagator (10) is fully described. The algorithm of its

calculation is as follows. First, one should seek all the stationary phase points in section 2.1.
This task is essentially reduced to a numerical solution of the one-dimensional equation (29).
Then, the action S̃αβ(r, t, r

′, t ′), the amplitude aαβ(r, r
′, τ ), and the index µαβ are easily

calculated with the help of equations (43), (48), (49), (56) and (61)–(64).

2.4. The case τ → 0

Let us demonstrate how the above equations work in the limiting case τ → 0. As τ → 0, a
particle must move with greater velocities along a classical path in order to get from the point
r′ to r during the time τ . It is assumed that r �= r′ are arbitrary but fixed points. Therefore,
one should expect that the absolute value of the asymptotic momentum |pαβ(r, r

′, τ )| → ∞
as τ → 0. From (20) and (25) it follows that p(θ) → ∞ at θ → θ1 = γ in � B ′OC or
θ → θ2 = α + δ in � A′OC ′ for the (+,+) equation and at θ → θ3 = 0 or θ → θ4 = δ

in � AOB for the (+,−) or (−,+) equations, respectively. Note that the (−,−) equation is
defined in such areas where p(θ) is finite and hence it does not give a contribution to the
propagator as τ → 0.

We shall seek solutions to the stationary phase equation (29) in the neighbourhoods of
points θ1, . . . , θ4 where p(θ) takes large values. For example, from (20) near the point θ = θ1

we get the following expansion for

p2(θ) ≈ Z|r − r′|
4rr ′ sin(δ/2)

(cosβ + 1)2

sin(γ /2) cos(α/2) sinθ1
(65)

where θ = θ1 + θ1, θ1 � 1. Neglecting the terms of order O(p−2), equation (29) near the
point θ = θ1 can be reduced to

p(θ)τ − |r − r′| = 0. (66)

Equation (66) has a solution if τ > 0. Combining (65) and (66), we get

θ1 = Zτ 2(|r − r′| + r ′ − r)2

4rr ′|r − r′|3 sin(δ/2) sin(γ /2) cos(α/2)
τ > 0. (67)
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In the case τ < 0, the (+,+) equation has no solution near θ = θ1. In contrast, we get a
solution near the point θ2 (θ = θ2 + θ2):

θ2 = Zτ 2(|r − r′| + r − r ′)2

4rr ′|r − r′|3 sin(δ/2) sin(α/2) cos(γ /2)
τ < 0. (68)

Similarly, we have

θ3 =
( τ

r + r ′
)2 Z tan(δ/2)

r
θ = θ3 + θ3 τ > 0 (69)

for the (+,−) equation and

θ4 =
( τ

r + r ′
)2 Z tan(δ/2)

r ′
θ = θ4 −θ4 τ < 0 (70)

for the (−,+) equation. Note that all the solutions (67)–(70) tends to zero as τ or Z → 0.
This asymptotic behaviour at τ → 0 is supported by numerical results presented in figure 2.

Substituting the above solutions into the matrix (60), one obtains(
∂2S++

∂p2

)
τ→0

=
(−τ 0 0

0 −τ 0
0 0 −τ

)
= −τE (71)

(
∂2S+−
∂p2

)
τ→0
τ>0

= −τ
(
r/(r + r ′) 0 0

0 r/(r + r ′) 0
0 0 1

)
(72)

(
∂2S−+

∂p2

)
τ→0
τ<0

= −τ
(
r ′/(r + r ′) 0 0

0 r ′/(r + r ′) 0
0 0 1

)
. (73)

From (71)–(73), we get

µ++ =
{

3 if τ > 0

0 if τ < 0

µ+− = 3(τ > 0) µ−+ = 0(τ < 0).

(74)

Finally, substituting the above solutions into (10), we obtain in the limit τ → 0, τ > 0 the
well known expression for the free-particle propagator

KWKB
++ (r, r′, τ )|τ→0 = (2π iτ)−3/2 exp

(
i
|r − r′|2

2τ

)
(75)

and the term that corresponds to rescattering on the Coulombic centre

KWKB
+− (r, r′, τ )|τ→0 = Zτ 1/2

(2π i)3/2rr ′(r + r ′)(1 + cos δ)
exp

(
i
(r + r ′)2

2τ

)
. (76)

As is seen, the first term is leading and the rescattering term vanishes as τ → 0. In the case
τ → 0, τ < 0, we must evidently obtain the same two contributions, with the exception of the
rescattering term KWKB

−+ that must appear instead of KWKB
+− .

3. The three-body continuum state

Consider the system of three charged particles into continuum: the ejected electron (e) moving
in the combined field of the scattered ion (p) and the recoil target ion (t). The three-body
continuum state derived by Kunikeev (1999a, b) is

:− = :−
α=+ + :−

α=−
:−
α = exp(iktrt + iKpRp)F

−
pα(kp, rp)F

−
N (R(t))F−α (rt ,R(t))

(77)
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where exp(· · ·) is a three-body plane wave, F−pα is the continuum distortion function due to
electron–projectile interaction into the unscattered (α = +) or scattered (α = −) parts of the
Coulomb wave satisfying incoming boundary conditions, and F−N denotes the phase factor
due to internuclear interaction; rt , rp are electronic coordinates with respect to target and
projectile ions, kt , kp are their corresponding momenta and R(t) is a time-dependent radius
vector specifying the relative position of the ions. For the distortion functionF−α , the following
asymptotic expansion near the target nucleus (rt/R � 1) is derived:

F−α (rt , t) = exp

(
− ikα(t)rt + i

∫ t

t0

dτ k2
α(τ )/2

)
K(N)(t, t0)ψ

−(kα(t0), rt ) (78)

where the first factor exp(· · ·) represents the Volkov–Keldysh state (Keldysh 1965) which
describes the motion of the unbound electron with definite value of momentum −kt in the
time-dependent field Epα(t) = k̇pα(t) produced by the projectile ion, while the second one,
K(N)(t, t0)ψ

−(kα(t0), rt ), is due to virtual transitions of the ejected electron in the Coulomb
field of the target ion induced by a series of δ-function impulses from an external time-dependent
field of the projectile ion. Here, K(N)(t, t0) is the propagator (2) that evolves the initial state,
the Coulomb waveψ−(kα(t0), rt ), from an initial moment t0 up to t . The phase function in (2)
takes the form: �ext(rt , ti) = (kα(ti+1)−kα(ti))rt = kα(ti)rt , where kα(t) = kt +kpα(t)

is an effective electron momentum modified by the projectile’s field.
Let us first examine the effect of one kick on the continuum state ψ−(k0, r). In the WKB

approximation (10), we have

K(1)(t1, t0)ψ
− = (−2π i)−3/2

∑
α1,β1,α0

∫
dr′ aα1β1(r, r

′, τ = t1 − t0)aα0(k0, r
′)

× exp
(

iS̃α1β1(r, r
′, τ ) + ikr′ + iSα0(k0, r

′)− i
π

2
µα1β1

)
(79)

where k0 = kα(t0), k = kα(t1)− kα(t0) and the Coulomb wave is written as

ψ−(k0, r) =
∑
α0=±

ψ−α0
(k0, r) =

∑
α0=±

aα0(k0, r) exp(iSα0(k0, r
′)).

It is assumed that the indices α1, β1 in (79) take such values at which the WKB contributions to
the Coulomb propagator are not negligible at the given parameters r, r′, τ . Using the stationary
phase approximation, we can reduce the integral (79) to a sum over contributions from the
stationary phase points

K(1)(t1, t0)ψ
− =

∑
α1,β1,α0,k

Aα1β1α0(r, r
′, τ )

× exp
(

iS̃α1β1(r, r
′, τ ) + ikr′ + iSα0(k0, r

′)− i
π

2
µc

)∣∣∣
r′=r′k(r,τ )

. (80)

Here, the amplitude is

Aα1β1α0(r, r
′, τ ) = aα1β1(r, r

′, τ )aα0(k0, r
′)| detD(r, r′, τ )|−1/2

and the index µc = µα1β1 + µk + 1(mod 4), where µk = inerdexD is a negative inertia index
of the matrix

D(r, r′, τ )|r′=r′k(r,τ ) =
∂2(S̃α1β1(r, r

′, τ ) + Sα0(k0, r
′))

∂r′2

∣∣∣∣∣
r′=r′k(r,τ )

.
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3.1. The stationary phase equation

The equation defining the stationary phase points r′k(r, τ ) is

∇r′(S̃α1β1(r, r
′, τ ) + Sα0(k0, r

′)) + k = 0. (81)

In view of (11) and (47), we can rewrite (81) in the form

∇r′Sβ1(pα1β1(r, r
′, τ ), r′) = k + ∇r′Sα0(k0, r

′) (82)

which represents the momentum conservation law. In fact, the right-hand side of (82) is an
initial distribution of the electron momentum just after the kick at moment t = t0. Between
the kicks, the system evolves according to the WKB Coulomb propagator so that the electron
moving along a hyperbolic path connecting the points r′ and r has the initial momentum
pi (r, r

′, τ ) = ∇r′Sβ1(pα1β1(r, r
′, τ ), r′) at point r′ at moment t0 and the final momentum

pf (r, r
′, τ ) = ∇rSα1(pα1β1(r, r

′, τ ), r) at point r at moment t1. Thus, equation (82) tells us
that one should seek the points r′ at which the initial momentum pi matches the momentum
of the electron just after the kick at moment t = t0.

On the other side, we can easily solve the reverse task, namely, find the reverse function
r(r′, τ ). Indeed, let a particle have an initial momentum pi , the right-hand side of (82), at
point r′. Equation (39) defines a two-valued map of the asymptotic momentum p = p0 into
the momenta pα=±(p0, r) at each point r. Our task is the reverse, that is, to determine p0 if
the momentum p = pi is known at point r = r′. The absolute value of p0 is readily obtained
from the energy conservation law

p0/p = a(p, r) =
√

1− 2Z/(p2r) 0 < a < 1. (83)

From (39) we get

2x = a

(
−1 + x0 ±

√
(1 + x0)2 +

4Z

p2
0r
(1 + x0)

)
(84)

where x0 = p̂0 · r̂, x = p̂ · r̂, |x0| � 1, |x| � 1. Solving (84) for x0, we obtain

x0 = (x + a)2 + x2 − 1

(x + a)2 + 1− x2
. (85)

It can be easily checked that (85) is a solution of the (+) or (−) equation (84) if −a < x � 1
or −1 � x < −a, respectively. At the boundary point x = −a, we obtain from (85) that
x0 = −1 and r locates at a caustics point. Thus, we have a single-valued map p̂as: p → p0

that depends on the direction of p relative to r and the value a. This map enables us to
construct a vector field pα(p0, r) = ∇rSα(p0, r, t), where the sign α = ± is uniquely defined
by the condition −a < x � 1 or −1 � x < −a in (85), so that pα(p0, r

′) = pi . Moreover,
from the equation q0 = ∇pSα(p0, r, t), where q0 = ∇pSα(p0, r

′, t0), we obtain the classical
trajectory rα(q0,p0, t) (see section 2.2) such that rα(q0,p0, t0) = r′, rα(q0,p0, t1) = r

(τ = t1 − t0) and ṙα(q0,p0, t0) = pi . It is obvious that for these points r′ and r lying on the
trajectory and for the difference of time τ the asymptotic momentum p0 obtained under the
map p̂as: pi → p0 represents at the same time a solution of the stationary phase equation (12):
pαβ(r(r

′, τ ), r′, τ ) ≡ p0(r
′). At small perturbations k, we obtain the following expansion

for

p0(r
′) = k0 +

(
∂2Sα0(k0, r

′)
∂r′∂k0

)−1

k. (86)

We underscore the fact that the map p̂as: pi → p0 is well defined only if the kinetic
energy p2

i /2 is larger than the absolute value of the potential energy Vc(r
′). There exists a

perturbation k at which

p2
i /2 < |Vc(r′)|. (87)
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In this case, an electron makes a transition to a bound state under the influence of the momentum
kick and its motion becomes finite. Let us determine the conditions imposed on k under
which (87) is fulfilled. Substituting the right-hand side of (82) into (87), we obtain

k2 + 2kk0 cos θk

√
1 +

|Vc(r′)|
k2

0/2
+ k2

0 < 0 (88)

where cos θk = k̂·k̂α0 and kα0 = ∇r′Sα0(k0, r
′). The discriminant of the quadratic equation

is

D = k2
0

(
cos2 θk

cos2 θc
− 1

)
where

cos θc = −
√

k2
0/2

k2
0/2 + |Vc(r′)|

.

It follows that D > 0 if cos2 θk > cos2 θc. The roots of the quadratic equation are

k1,2 = k0


cos θk

cos θc
±
√

cos2 θk

cos2 θc
− 1


 .

Thus we have k1,2 > 0 if cos θk < 0 and (88) is fulfilled if

k1 < k < k2 and θc < θk < π. (89)

Note that at high energies k2
0/2 � |Vc(r′)| we have θc → π . In this case, it is highly unlikely

that inequality (87) will be fulfilled.
Using this method, we can basically construct the function r(r′, τ ) defined at each point

where (87) does not fulfil. Suppose that from this function we can also derive reverse function
or functions r′k(r, τ ) in case where several points r′k are related to the given point r.

3.2. The amplitude Aα1β1α0

Substituting the function r′k(r, τ ) into (81) reduces it to an identity. Differentiating this identity
with respect to r gives

D(r, r′k, τ )
∂r′k
∂r

= ∂2Sβ1

∂r′k∂pα1β1

∂pα1β1

∂r
. (90)

Combining (54) and (90), we get

D(r, r′k, τ ) = − ∂2Sβ1

∂r′∂p

(
∂2Sα1β1

∂p2

)−1
∂2Sα1

∂p∂r

(
∂r′

∂r

)−1
∣∣∣∣∣
p=pα1β1 ,r

′=r′k(r,τ )

= − ∂2S̃α1β1

∂r′∂r
∂r

∂r′

∣∣∣∣∣
r′=r′k(r,τ )

(91)

where
∂2S̃α1β1
∂r′∂r is a transpose of the matrix (55). Thus, from (49) and (91) we obtain

Aα1β1α0(r, r
′
k, τ ) =

∣∣∣∣det
∂r′k
∂r

∣∣∣∣
1/2

aα0(k0, r
′
k). (92)

Using the continuity equation (9) and the Gauss theorem, one can easily derive the relationship∣∣∣∣det
∂r′k
∂r

∣∣∣∣ = a2
α1
(pα1β1 , r)

a2
β1
(pα1β1 , r

′
k)

(93)
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which is also valid in the case where a path connecting the points r′k and r intersects the caustics
line. Therefore, equation (92) may be cast as

Aα1β1α0(r, r
′
k, τ ) = aα1(pα1β1 , r)

aα0(k0, r
′
k)

aβ1(pα1β1 , r
′
k)
. (94)

3.3. The index µc

It remains to evaluate the index µc in (80). We can assume without loss of generality that the
time interval τ is sufficiently small so that the initial and final points r′k and r of a path are
close to each other. Consider first the simpler case α1 = β1, where a path does not contain
caustics points. At small τ and r = r − r′k , we can develop the function ∂2Sαα

∂p2 as

∂2Sαα

∂p2
≈ τ

(
−E +

(
r

τ
· ∇r′

)
∂2Sα(p, r

′)
∂p2

)
. (95)

Furthermore, putting r/τ ≈ ∂Sα(p, r
′)/∂r′, we rewrite (95) in the form

∂2Sαα

∂pi∂pj
= τ

(
−δij +

∂

∂pi

(
∂Sα(p, r

′)
∂r ′k

∂2Sα(p, r
′)

∂r ′k∂pj

)
− ∂2Sα(p, r

′)
∂pi∂r

′
k

∂2Sα(p, r
′)

∂r ′k∂pj

)
. (96)

Differentiating the Hamilton–Jakobi equation (7) with respect to pj , we obtain the relationship

∂Sα(p, r
′)

∂r ′k

∂2Sα(p, r
′)

∂r ′k∂pj
= pj . (97)

Substituting (97) into (96), we get

∂2Sαα

∂p2
= −τA A (98)

where

A = ∂2Sα(p, r
′)

∂r′∂p

and A is a transpose of the matrix A. From (98) we easily get

µαα =
{

0 if τ < 0
3 if τ > 0

(99)

since the quadratic form (x, A Ax) = (Ax, Ax) is positively defined. Substituting (98)
into (91), we obtain

D = 1

τ

∂r

∂r′
(100)

where

∂r

∂r′
≈ E + τ

∂2Sα(p, r
′)

∂r′2
. (101)

The second term in (101) can be neglected at small τ since ∂2Sα/∂r
′2 is a smooth matrix

function in the case where a path does not contain caustics points. Then, from (100) and (101)
we get

µk =
{

3 if τ < 0
0 if τ > 0

(102)

and the index µc = 0 (mod 4).
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Suppose now that a path contains a caustics point. Choosing the system of coordinates
such that p̂ = (0, 0, 1), r̂ = (α sin θ, 0, cos θ), and r̂′ = (β sin θ ′, 0, cos θ ′), we obtain near
the caustics point (at θ = π −θ , θ ′ = π −θ ′, θ,θ ′ � 1) the following expression:

∂2Sαβ

∂p2
= −τ

(
(a2 + 1)/4 0 −a/2

0 −a2/θθ ′ 0
−a/2 0 1

)
(103)

where a = (
√

2Z/r)/p and (α, β) = (+1,−1) at τ > 0 and (α, β) = (−1,+1) at τ < 0. In
deriving (103) the relations r ′−r = pτ and rθ+r ′θ ′ = ap|τ | following from equation (44)
have been used. From (103) we readily obtain µ+− = 2 and µ−+ = 1. Further, from (42) we
get the following expressions for

∂2S+

∂p∂r
=
( 1/2 0 −a/2

0 a/θ 0
−θ/2 0 1

)
(104)

and

∂2S−
∂r′∂p

=
( 1/2 0 θ ′/2

0 −a/θ ′ 0
−a/2 0 1

)
(105)

near the caustics point. Multiplying together all the matrices, we get

∂2S̃+−
∂r′∂r

= ∂2S−
∂r′∂p

(
∂2S+−
∂p2

)−1
∂2S+

∂p∂r
= −1

τ
E τ > 0. (106)

The same result is obtained in the (−,+) case:

∂2S̃−+

∂r′∂r
= −1

τ
E τ < 0. (107)

Thus, from (91), (106) and (107) we have

µk =
{

inerdex(∂r/∂r′) τ > 0

3− inerdex(∂r/∂r′) τ < 0.
(108)

The momenta pα(r) and pα(r + dr) given at close points r and r + dr are related by

pα(r + dr)− pα(r) = ∂2Sα(p, r)

∂r2
dr. (109)

Divide both sides of (109) by the differential of time dt . Then, the left-hand side of (109) will
represent a force acting on a particle at point r. Hence, we can write

∂2Sα(p, r)

∂r2
dr = ∂2Sβ(p, r

′)
∂r′2

dr′ (110)

since the force is assumed to be continuous near the caustics line. Making use of relation
dr = (∂r/∂r′) dr′, we obtain from (110) the following expression:

∂r

∂r′
=
(
∂2Sα(p, r)

∂r2

)−1
∂2Sβ(p, r

′)
∂r′2

(111)

near the caustics line. Differentiating (39) with respect to r, we get

∂2Sα

∂ri∂rj
= − Z

wαpξ 2

(
ri

r
+
pi

p

)(
rj

r
+
pj

p

)
+
wα − 1

2

p

r

(
δij − rirj

r2

)
. (112)

Choosing the system of coordinates such as in (103), we reduce the matrix (112) to

∂2Sα

∂ri∂rj
=
(
a11 0 a13

0 a22 0
a13 0 a33

)
(113)
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where

a11 = − Z

wαpr2

(
sin θ

1 + cos θ

)2

+
wα − 1

2

p

r
cos2 θ a22 = wα − 1

2

p

r

a33 = − Z

wαpr2
+
wα − 1

2

p

r
sin2 θ a13 = − αZ

wαpr2

sin θ

1 + cos θ
− α

wα − 1

2

p

r
sin θ cos θ.

As above, we have near the caustics line

∂2Sα

∂ri∂rj
= p

r

(−1/2 0 a/2
0 αa/θ 0
a/2 0 3αaθ/4

)
(114)

and

∂2Sβ

∂r ′i ∂r
′
j

= p

r ′

(−1/2 0 a′/2
0 βa′/θ ′ 0

a′/2 0 3βa′θ ′/4

)
. (115)

Multiplying together the matrices, we get

∂r

∂r′
=
( 1 0 0

0 −θ/θ ′ 0
0 0 1

)
(116)

where we have set r → r ′ and a = (
√

2Z/r)/p → a′ = (
√

2Z/r ′)/p near the caustics
line. Note that both equations (43) and (93), and equation (116), give the same result for
| det(∂r/∂r′)| = θ/θ ′ in the limit θ , θ ′ → 0, θ/θ ′ = const. Further, from (108)
and (116) we have

µk =
{

1 τ > 0

2 τ < 0
(117)

and µc = 0 (mod 4).
Summarizing, we can write equation (80) as

K(1)(t1, t0)ψ
− =

∑
α0,k

(ψ−α1
(p0(r

′), r)/ψ−β1
(p0(r

′), r′))ψ−α0
(k0, r

′)

× exp

(
−i

p2
0(r

′)
2

τ + ikr′
)∣∣∣∣

r′=r′k(r,τ )
. (118)

Here, p0(r
′) = pα1β1(r(r

′, τ ), r′, τ ) is the asymptotic momentum defined by equations (83)
and (85) under the map p̂as: pi (r

′)→ p0(r
′). The indices α1 and β1 are also determined by

this map (β1 = α0 at small k); α1 = β1 if the path connecting the points r and r′k does not
contain a caustics point and otherwise α1 = −β1.

It is interesting to remark that equation (118) differs substantially from the corresponding
one of the Maslov–Fedoriuk theory (1981) by a phase factor exp(−iπµ/2) where µ =
inerdex(∂r/∂r′) is the Morse index of the path connecting the points r and r′. This is because
the propagator in Maslov’s treatment (1988) is taken without the phase factor exp(−iπµαβ/2)
at small τ . As is seen, the role of this factor appears to be essential since we obtain the index
µc = 0 (mod 4).

Let us consider the limiting behaviour of (118) as k → 0. In this limit, from (86) we
obtain p0(r

′) = k0 and β1 = α0 and (118) reduces to

K(1)(t1, t0)ψ
− =

∑
α0,k

ψ−α1
(k0, r) exp

(
−i

k2
0

2
τ

)
. (119)
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By (44), near the caustics point (r = rc, θ = π) the perpendicular component of momentum
p⊥ is equal to

√
2Z/rc. Denote by Dc the domain near the caustics line such that Dc = {r =

(r‖, r⊥) : r‖ < 0, |r⊥| < rmax = |τ |√2Z/|r‖|}, where r‖ and r⊥ are components of the

radius vector r parallel or perpendicular to k0 and the difference in time τ is assumed to be
sufficiently small. If a path does not contain a caustics point, one should put in (119) α1 = α0

and k = 1, i.e., in this case the point r /∈ Dc and the argument of the final function ψ−α1
(k0, r)

is related to a single point r′1 of the initial function ψ−α0
(k0, r

′
1); we have the correspondences

ψ−+ (k0, r
′
1)→ ψ−+ (k0, r) and ψ−− (k0, r

′
1)→ ψ−− (k0, r).

Suppose now that at some α0, to be definite let α0 = +1, a path contains a caustics point.
It is possible in the case r ∈ Dc and τ < 0. Here, we have two classical trajectories coming to
a point r from points r′1 and r′2 (k = 2) during the time τ . The difference between azimuthal
angles of these radius vectors r′1 and r′2 appears to be π , i.e., r′1 and r′2 are located in different
sides from the caustics line. These trajectories define, respectively, the functions r′1(r, τ ) and
r′2(r, τ ) in (118). The initial function ψ−+ (k0, r

′) generates the two terms: one term with
α1 = −1, ψ−+ (k0, r

′
1)→ ψ−− (k0, r), corresponding to the path that passes through a caustics

point and the other with α1 = +1, ψ−+ (k0, r
′
2)→ ψ−+ (k0, r), that stems from a trajectory that

does not intersect the caustics line. At the same time, the initial function ψ−− (k0, r
′) does not

contribute to (119), i.e., for this component there is no point r′ related to r ∈ Dc and we have
k = 0. Thus, from (119) we get a WKB analogue

K(1)(t1, t0)ψ
− =

∑
α0

ψ−α0
(k0, r) exp

(
−i

k2
0

2
τ

)
= ψ−(k0, r) exp

(
−i

k2
0

2
τ

)
(120)

of an exact result that gives an operation of Coulomb propagator on the Coulombic wave. In
contrast, Maslov’s formula gives a different result at r ∈ Dc, namely, instead of ψ−(k0, r) we
obtain

ψ−(k0, r)→ ψ−+ (k0, r) + exp(−iπ/2)ψ−− (k0, r) (121)

where the first and second terms correspond to the paths that do not contain and contain a
caustics point. As is seen, Maslov’s formula does not work in Dc.

Further using the approximation (118) on the subsequent steps, we get straightforwardly

K(N)(t, t0)ψ
− =

∑
k0,...,kN−1,α0

N−1∏
i=0

(ψ−αi+1
(p0i (ri ), ri+1)/ψ

−
βi+1

(p0i (ri ), ri ))ψ
−
α0
(k0, r0)

× exp

(
− i

N−1∑
i=0

(
p2

0i (ri )

2
τi −kiri

))∣∣∣∣
ri=rki (ri+1,τi )

. (122)

Here, the coordinates ri (i = 0, 1, . . . , N − 1) are recursively related by

∇ri Sβi+1(pαi+1βi+1 , ri ) = ki + ∇ri Sαi (pαiβi , ri ) (123)

where the momentum pαi+1βi+1(ri+1(ri , τi), ri , τi) = p0i (ri ) is obtained under the map p̂as:
pi (ri ) ≡ ki + ∇ri Sαi (pαiβi , ri ) → p0i (ri ). In addition, one should take into account that
pα0β0 = k0,ki = kα(ti), τi = ti+1− ti and rN = r. Moreover, the index βi+1 is definitively
determined by the map; αi+1 = βi+1 if path connecting the points ri+1(ri , τi) and ri does not
intersect the caustics line and otherwise αi+1 = −βi+1.

The continuum state (122) describes N rescatterings of an electron in the Coulomb
field induced by N impulse kicks at moments t = ti . It is clear that (122) satisfies the
property (120) in the limit ki → 0, i = 0, 1, . . . , N − 1. In this connection note that
the continuum state, equation (46) obtained earlier in Kunikeev (1999a), does not fulfil this
property. Thus, equation (122) improves the previous result considerably. We can further
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generalize equation (122) in different directions, for example, replace the WKB scattering
waves ψ−α=±1(p, r) by their quantum mechanical counterparts (Kunikeev and Senashenko
1996) or assume as a perturbation the general function: ki → − ∫ ti+1

ti
dτ ∇rWext(ri , τ ),

kiri → �ext(ri , ti).

4. Summary and outlook

In this paper, we present a quasiclassical treatment convenient for detailed investigation of the
complicated time-dependent dynamics of an atomic electron subject to a series of δ-function
impulses. This description is developed to calculate the propagator (2) of a kicked atomic
system. Let us review the main steps in solving this task. First, the two-body Coulomb
propagator is derived in the WKB approximation. We obtained analytical expressions in
terms of elementary functions for the Coulomb action equation (48), the amplitude defined
by equations (43), (49), (56), (61) and (62) and the index µαβ derived from (63) and (64) as
functions of the asymptotic momentum pαβ , the coordinates r, r′ and the difference in time τ .
These expressions are fairly simple and may be useful in many applications. The asymptotic
momentum pαβ is a solution of the stationary phase equation (12). Solving this equation for
pαβ is reduced to a numerical solution of one-dimensional equation (29).

In the second step, we use the derived two-body WKB propagator to evaluate the action
of (2) on the Coulombic wave. Such an expansion appears in constructing the three-body
continuum state for the system of two heavy particles and a light particle (Kunikeev 1999
a, b). Equation (122) represents the result of this calculation. Unlike the results of Maslov and
Fedoriuk (1981) and Maslov (1988), we obtained the index µc = 0 (mod 4). It is found that
the zero value of µc provides a correct behaviour for the function (122) in the domain Dc near
caustics points, while Maslov’s quasiclassical formula with the phase factor exp(−iπµ/2)
where µ is the Morse index of a trajectory does not work correctly in Dc. Moreover, we
can assume that the equality µc = 0 (mod 4) must remain valid not only in the particular,
Coulombic, case but, hypothetically, in a general case, for example, in a superposition of
Coulombic and short-range potentials or in a Hartree–Fock atomic potential.

Note that a similar expansion can be readily developed, if one takes an arbitrary initial state
ai(r) exp(iSi(r)) instead of a Coulombic wave. However, such one-centre expansions (near
the target ion) may be inefficient when two-centre effects are important. If, for instance, the
trajectory of electron starts or comes into the neighbourhood of a projectile ion, the projectile
potential should be taken as an atomic potential V , while the target potential should be taken
as a perturbation potential Wext. If then, during the time evolution, the trajectory of an electron
comes into the neighbourhood of a target ion, the choice of potentials V and Wext should be
reversed. In this way, using a choice of potentials V and Wext corresponding to a particular
situation, one can construct a two-centre continuum state with the aid of consecutive expansions
of type (122). Further improvement could be achieved by using a split-operator technique (Feit
and Fleck 1978, Fleck et al 1976) in equations (2). Since the atomic Hamiltonian Hat and the
coupling to the external field Wext do not in general commute, the error in the discretization
of the time evolution may be reduced by splitting the ‘atomic’ propagation into two half steps
before and after the kick by the field.

It is important to remark that the continuum state (122) incorporates intermediate
rescatterings due to the stepped changes ki (i = 0, 1, . . . , N − 1) of the momentum during
the time evolution. As ki → 0 and N → ∞, it is expected that the stepped evolution will
approach to a continuous one. Therefore, there is a great interest in studying effects of these
intermediate rescatterings into continuum in various physical processes. For example, atomic
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ionization induced by ion impact or by short laser pulses are processes suitable to exhibit
these effects in the spectra of ejected electrons. Further work is being carried out to compute
transition matrices. Numerical results will be presented elsewhere when available.

Note added in proof. In calculating the initial phase ϕ−(ν) at |ν| � 1 in (8), the π/2 phase shift was lost. This means
that the proper relation between the phases must be ϕ− = π/2 + ϕ+ and the phase function (6) at α �= β acquires
the additional phase shift ±π/2 with respect to the action function (46). This phase shift arises during transition of a
particle through a caustics point. Taking into account this phase shift, we actually obtain that the present results are
fully compatible with Maslov’s treatment. For more details, see a forthcoming paper by the author (Kunikeev 2000),
in which the results are further generalized to the case of a general potential and, especially, the case of a Coulombic
repulsive potential is considered.
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